SureLock[™]

TO-can Stabilized Laser Diodes

Coherent's TO-can Stabilized Laser Diode is a single transverse and longitudinal mode laser packaged in a standard TO-can form factor. This cost-effective laser features standard package design, extremely narrow linewidth, broad temperature operating range, and low power consumption, making it ideal for a wide array of analytical instrumentation and metrology applications.

All SureLock[™] Series lasers utilize the Coherent PowerLocker[®] Volume Holographic Grating (VHG) for stabilization, providing precise, ultra-stable center wavelengths, minimal temperature dependence, and consistent spectral performance within the stabilized temperature region.

FEATURES

- Single frequency performance at <300MHz linewidth
- Cost-effective, instrumentation-grade performance for measurement systems
- Low power consumption
- Wavelength stability across stabilized temperature range operating range
- Widely recognized standard TO-can form factor for ease of integration
- Custom power, wavelengths and tolerances available

APPLICATIONS

- HeNe Replacement
- Wavelength reference source
- Raman Spectroscopy
- Metrology
- Bioinstrumentation
- Particle Counting
- Sensing and Environmental Monitoring
- Interferometry
- Holography
- Analytical Instrumentation
- Precision Manufacturing

Specifications ¹	TO-640 nm 20 mW	TO-638 nm 32 mW	TO-640 nm 32 mW	TO-658 nm 40 mW	TO-660 nm 40 mW
SKU	115-81045-003	115-81045-012	115-81045-013	115-ER328-025	115-ER328-023
Spatial Mode	Single Mode	Single Mode	Single Mode	Single Mode	Single Mode
Output Power (mW) Maximum	20	32	32	40	40
Center Wavelength ² (nm) Minimum Typical Maximum	639 640 641	637 638 639	639 640 641	657 658 659	659 660 661
Typical Linewidth (MHz)	300	300	300	300	300
Central Stabilized Temperature (°C) Minimum Maximum	15 45	15 45	15 45	15 40	15 40
Stabilized Temperature Range (°C) Minimum Typical	10 14	10 14	10 14	10 15	10 15
Threshold Current (mA) Typical Maximum	45 60	45 60	45 60	55 70	55 70
Operating Current (mA) Typical Maximum	70 100	80 105	80 105	100 135	100 135
Operating Voltage (V) Typical Maximum	2.4 2.6	2.4 2.6	2.4 2.6	2.5 2.8	2.5 2.8
Photodiode Reverse Voltage (max)	30	30	30	-	-
Laser Reverse Voltage (max)	2	2	2	-	-
Monitoring Output Current (mA) Minimum Typical Maximum	0.07 0.15 0.2	0.07 0.15 0.2	0.07 0.15 0.2	0.05 0.3 0.6	0.05 0.3 0.6
Beam Divergence, Perpendicular (°) Minimum Typical Maximum	16 21 24	16 21 24	16 21 24	- 14 -	- 14 -
Beam Divergence, Parallel (°) Minimum Typical Maximum	7 10 13	7 10 13	7 10 13	- 10 -	- 10 -
Off Axis Angle, Perpendicular (°) Minimum Typical Maximum	- - -	- -	- - -	- - -	- - -
Off Axis Angle, Parallel (°) Minimum Typical Maximum	- - -	- - -	- - -	- - -	- - -

1. All specifications are at rated power with a case temperature within stabilized temperature range unless otherwise noted.

2. 3. Wavelengths specified are vacuum referenced. Ex: 632.991 nm vacuum referenced is equivalent to 632.816 nm standard air referenced for HeNe.

Non-condensing.

Specifications ¹	TO-640 nm 20 mW	TO-638 nm 32 mW	TO-640 nm 32 mW	TO-658 nm 40 mW	TO-660 4nm 0 mW
Emitter Size (micron)	-	-	-	-	-
Differential Efficiency (mW/mA)	1	1	1	1.1	1.1
Polarization, Typical	60:1	60:1	60:1	100:1	100:1
Polarization Orientation	TM	TM	TM	TE	TE
Pin out (Pin 1, Pin 2, Pin 3)	PC, PA-LC, LA	PC, PA-LC, LA	PC, PA-LC, LA	PA, PC-LA, LC	PA, PC-LA, LC
Astigmatism (mm)	-	-	-	-	-
Linewidth Units	MHz	MHz	MHz	MHz	MHz
Operating Requirements					
Operating Temperature ³ (°C) Minimum Maximum	0 50	0 50	0 50	0 50	0 50
Storage Temperature ³ (°C) Minimum Maximum	-10 60	-10 60	-10 60	-10 60	-10 60

1. All specifications are at rated power with a case temperature within stabilized temperature range unless otherwise noted.

Wavelengths specified are vacuum referenced. Ex: 632.991 nm vacuum referenced is equivalent to 632.816 nm standard air referenced for HeNe.
Non-condensing.

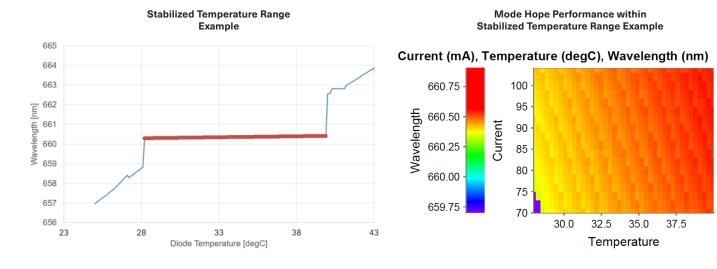
C HERENT

Specifications ¹	TO-687 45 mW	TO-690 45 mW	TO-785 80 mW	TO-785 100 mW
SKU	115-81041-009	115-81039-016	115-ER255-008	115-ER255-006
Spatial Mode	Single Mode	Single Mode	Single Mode	Single Mode
Output Power (mW) Maximum	45	45	80	100
Center Wavelength ² (nm) Minimum Typical Maximum	686 687 688	689 690 691	784.5 785 785.5	784.5 785 785.5
Typical Linewidth (MHz)	300	100	300	300
Central Stabilized Temperature (°C) Minimum Maximum	15 40	15 40	15 40	15 40
Stabilized Temperature Range (°C) Minimum Typical	10 15	10 15	10 15	10 15
Threshold Current (mA) Typical Maximum	35 60	30 60	35 55	35 55
Operating Current (mA) Typical Maximum	75 140	75 120	105 160	125 160
Operating Voltage (V) Minimum Typical Maximum	2 2.7 3	- 2.3 3	- 2.3 -	- 2.3 -
Photodiode Reverse Voltage (max)	30	30	-	-
Laser Reverse Voltage (max)	2	2	2	2
Monitoring Output Current (mA) Minimum Typical Maximum	0.05 0.3 2.5	0.08 0.15 0.35	0.1 0.5 0.7	0.1 0.5 0.7
Beam Divergence, Perpendicular (°) Minimum Typical Maximum	16 20 25	18 21 25	15 17 19	15 17 19
Beam Divergence, Parallel (°) Minimum Typical Maximum	8 10.5 14	7 9 12	8 9 10	8 9 10
Off Axis Angle, Perpendicular (°) Minimum Typical Maximum	-2.5 - 2.5	- - -	-2 - 2	-2 - 2
Off Axis Angle, Parallel (°) Minimum Typical Maximum	-2 - 2		-2 - 2	-2 - 2

1. All specifications are at rated power with a case temperature within stabilized temperature range unless otherwise noted.

2. Wavelengths specified are vacuum referenced. Ex: 632.991 nm vacuum referenced is equivalent to 632.816 nm standard air referenced for HeNe.

Wavelengths spectrum
Non-condensing.

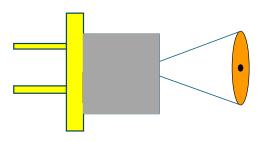

Specifications ¹	TO-687 45 mW	TO-690 45 mW	TO-785 80 mW	TO-785 100 mW
Emitter Size (micron)	-	2x3	0.9x2.1	0.9x2.1
Differential Efficiency (mW/mA)	0.9	1.1	1.1	1.1
Polarization, Typical	100:1	-	-	-
Polarization Orientation	TE	TE	TE	TE
Pin out (Pin 1, Pin 2, Pin 3)	PA, PC-LA, LC	PC, PA-LC, LA	PC, PA-LC, LA	PC, PA-LC, LA
Astigmatism (mm)	8	1	-	-
Linewidth Units	MHz	MHz	MHz	MHz
Operating Requirements				
Operating Temperature ³ (°C) Minimum Maximum	0 50	0 50	0 50	0 50
Storage Temperature ³ (°C) Minimum Maximum	-10 60	-10 60	-10 60	-10 60

All specifications are at rated power with a case temperature within stabilized temperature range unless otherwise noted. 1.

2. 3. Wavelengths specified are vacuum referenced. Ex: 632.991 nm vacuum referenced is equivalent to 632.816 nm standard air referenced for HeNe.

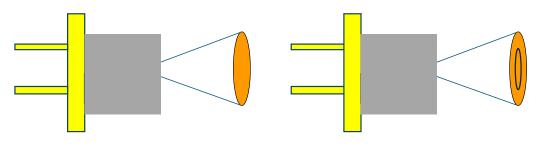
Non-condensing.

C HERENT

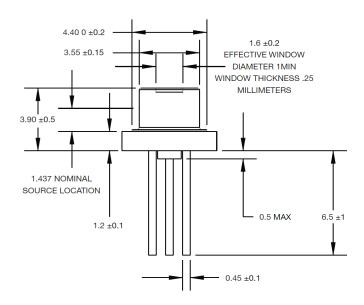


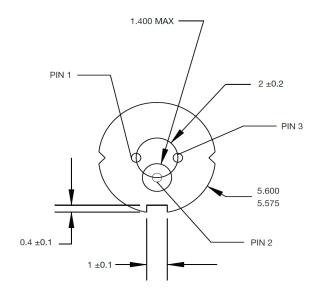
Typical Performance Data

Beam Profile of a Wavelength Stabilized Diode

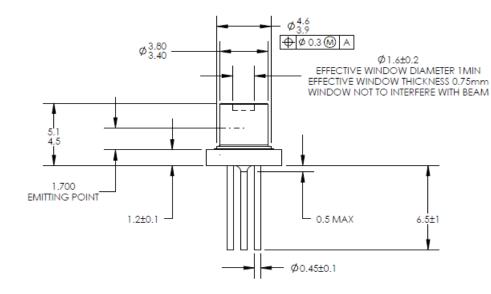

The compact design of TO-can volume-holographic-grating (VHG) stabilized diodes results in an artifact in the spatial beam profile. The VHG selectively diffracts light from the central light cone emitted by the diode to provide the wave-length-stabilizing optical feedback. The presence of a round region with reduced optical intensity, "black dot", in the beam profile indicates that the laser is locked to a single, narrow-band wavelength. This region is typical a few degrees at or near center of the elliptical output cone. Low M² values and reasonable single mode fiber coupling efficiencies remain achievable with these diodes.

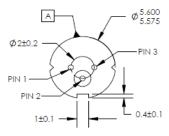
When the wavelength is not stabilized, the central region brightens up or might develop a ring structure.

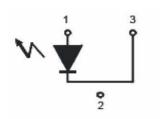

Unstabilized beam profile

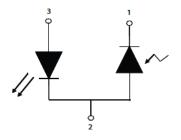


C@HERENT

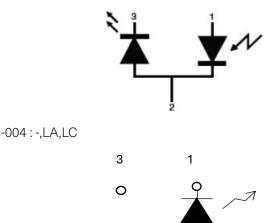

Mechanical Specifications


Size A


Size B



Pinout


-001 : LA,-,LC

-003 : PC,PA-LC,LA

-002 : PA,PC-LA,LC

0 2

Warnings

Electrostatic Discharge (ESD): Laser diodes are highly sensitive to electrostatic discharge (ESD) and voltage transients. Proper ESD procedures must be followed when handling laser diodes. Laser diodes are delivered in a conductive protective bag. When not in use, the laser anode and cathode electrical contacts should be shorted together to prevent ESD damage. Create a static free work environment. All personnel and tools that come into contact with the laser are continuously grounded, such as by using a grounding wrist strap. Electrostatic discharges could create latent damage that shorten lifetime of a diode.

Optical Feedback: Semiconductor laser diodes are highly sensitive to optical feedback, which can cause latent damage that may not be immediately apparent. Wavelength-stabilized laser diodes are particularly vulnerable and may lose their spectral characteristics, such as center wavelength and linewidth, when exposed to sufficient optical feedback.

To prevent these issues, optical isolators must be used in applications where optical feedback is intrinsic. Avoid focusing the light output on highly reflective surfaces, as this generates optical feedback to the laser diode. For fiber-coupled applications, angled and anti-reflective (AR) coated fiber tips are recommended. All reflective surfaces in the optical path should be angled to prevent reflections from being directed back to the laser diode.

During optical alignments near normal incidence, use an optical isolator or optical density (OD) filter to eliminate the risk of brief high-intensity optical feedback. Be cautious with wavelength-sensitive elements such as narrow bandpass filters. Angularly sweeping the alignment of such elements can cause sufficient feedback to briefly unlock the diodes which would generate high-intensity reflected off-wavelength light, significantly increasing the risk of damage to the laser diode.

Laser Eye Safety: These diodes are intended for use in OEM applications. Use protective eyewear and follow local regulatory requirements for use of laser diodes.

Environmental Conditions: For some highly sensitive wavelength reference applications, environment and ambient conditions need to be considered. Air movement and ambient temperature swings may affect performance in those applications.

Mounting Considerations: Avoid applying stress to the laser diode component. Highly alignment sensitive components are mounted inside the protective cap. Avoid clamping the laser diode along the axis of the beam. Suggested mounting is clamping about the radius of the diode or bonding the diode to a thermally conductive material.

Mode Hop: To minimize mode hops in single-frequency lasers, it is crucial to control environmental conditions and eliminate optical feedback as these factors can induce mode hops, a sudden change in power and wavelength. However, even with these precautions, mode hops may still occur, especially as the diode ages and its characteristics change over time. Suitable solutions are dependent on application and may involve calibration routines or integration of appropriate sensors.

THIS PRODUCT IS INTENDED FOR USE SOLELY AS A COMPONENT OF AN OEM PRODUCT AND DOES NOT COMPLY WITH CDRH PERFORMANCE STANDARDS 21 CFR SUBCHAPTER J IF OPERATED AS A STANDALONE INSTRUMENT.

© 2024 Coherent Corp. Legal notices : coherent.com/legal For more information <u>www.coherent.com</u>